Math 564: Advance Analysis 1
Lecture 16
Example. For sets I, J (e.y, $I=\mathbb{N}=J$) and counting measures μ, v on I \& J, resp., we aleceds know Fubini-Tonelli from basic analysis:
(a) Tonell: For nonnegative $\left(a_{i j}\right)_{i \in I, j \in J}$,

$$
\sum_{j \in J} \sum_{i \in I} a_{i j}=\sum_{(i, j) \in I_{*} J} a_{i j}-\sum_{i \in I} \sum_{j \in J} a_{i j}
$$

(b) Fabini: If $\left(a_{i, j}\right)_{i, j \in I \times I}$ is absolutely sumarable, \&.e $\sum_{\left[i, j \in I_{E}\right]}\left|a_{i}\right|<\infty$,

$$
\sum_{j \in J}^{\text {then }} \sum_{i \in I} a_{i j}=\sum_{(i, j) \in I \times J} a_{i j}-\sum_{i \in I} \sum_{j \in J} a_{i j}
$$

Well frost prove Fubini-Tonelli for $M \otimes N$-measurable functions, and deduce the $y_{x} v$-measherede version in HIW.

Def. For a function $f: X \times Y \rightarrow Z$,
o for $x \in X$, call $f_{x}: Y \rightarrow Z$, given by $y \leftrightarrow s f(x, y)$, the vertical fibec/section of f over x lat x.
o ter $y^{\in} Y$, call $f^{y}: X \rightarrow Z$, given $h_{y} x \leftrightarrow f(x, y)$, the horizontal fiber/section of f at y.
Similarly, for $R \subseteq X \times Y$, al $x_{0} \in X, y_{0} \in Y$, call:

$$
\begin{aligned}
& R_{x_{b}}:=\left\{y \in Y:\left(x_{0}, y\right) \in R\right\} \\
& R_{y_{0}}:=\left\{x \in X:\left(x, y_{0}\right) \in R\right\}
\end{aligned}
$$

The vertical al horizontal fibers of R at x_{0} d yo, resp.

Leman. Le (X, M) and (Y, μ) be measurable spaces.
(a) If $R \in \mu \otimes N$, then R_{x} and R^{y} are resp- in $\|$ and M, for all $x \in X$ al $y \in Y$.
(b) It $f: X \times Y \rightarrow Z \quad(M \otimes N \mathcal{L})$-meas., where (Z, \mathcal{L}) is a meassuabll space, then F_{X} al $t^{\prime \prime}$ are $(N, \mathcal{1})$ and $(M, 1)$. meas. for all $x \in X, y \in Y$.
Pod. (a) Lt \mathcal{S} be the collection f all $R \in 川 \otimes N$ satisfying the conclusion $\forall x \in X$ at $\forall s \in Y$. Then S contains all rectangles $A \times B, A \in M$ a $B \in \mathcal{J}$. Moreover, ζ ii closed arles ctbl unions id emplevents lease $\left(U_{u} R_{n}\right)_{x}=V_{n}\left(R_{n}\right)_{x}$ al $\left(R^{c}\right)_{x}=\left(R_{x}\right)^{c}$, ie. union el copplenent moment north titer. $S_{0} S$ is a σ-a ll. containing all rectangles, hence $S=\mu \otimes M$.
(b) This follows from (a) beose preinange commutes with tiber: let $B \in \mathcal{L}$, then $f_{x}^{-1}(B)=\left(f^{-1}(B)\right)_{x} \in W I_{y}$ (a).
Fabini-Tonclli for sets. Lt (X, μ, μ) and (Y, N, ν) be σ-finite measure spaces and let $R \in \mathscr{l} \otimes N$. Then
$g: x \mapsto \nu\left(R_{x}\right)$ and $h: y \mapsto \mu\left(R^{4}\right)$ are μ and N neassrceble, $X \rightarrow[0, \infty] \quad y \rightarrow(0, \infty]$
(*) $\quad \underbrace{\int v\left(R_{x}\right)}_{g(x)} d \rho(x)=\mu_{x \nu}(R)=\int \underbrace{\mu\left(R^{y}\right)}_{h(y)} d v(y)$.

Prod ut ρ be the ut it all $R \in \mu \otimes N$ s.t. the cocclasion holds. Then ζ contains all rectangles $R \equiv A \times B$, simply here $g(x)=\nu\left(R_{x}\right)=\nu(B) \cdot \mathbb{1}_{A}(k)$, i.e. $g=\nu(B) \cdot \mathbb{1}_{A}$, al' $(*)$ by the def. of $\mu_{x} v$. First assche that μ, v are finite. Attempt 1. It's not hard to chow ht ζ is closed under comp-

Cements. However, cthl unions are difficult. It we could prove finite unions, then we would get ctbl unions from cthl increasing unions, which ore easing to deal with using MCT, Finite unions are still hard be ce if $R_{0} \& R_{1}$ overlap thin $\mathbb{1}_{R_{0} \cup R_{1}} \neq \mathbb{1}_{R_{0}}+\mathbb{1}_{R_{1}, \text {, so can }}$ (f east appeal to the linearity of ietegral.

Attempt 2. Note that ζ achaclly contains the finite anions of rectangles bee they are equal to finite disjoint unions of rectangles, so the indicator function is just the finite sen of indiectoos of rectangles, hence finite additinif of insures al linearity of integrals saves the day. Tue, S contains the alg. A generated by rectangles.

Monotone Class Lemma. If S contains on algebra A and is closed uncles $\left(\underset{\sim}{1}\right.$ and (1), then $S \supseteq\langle A\rangle_{0}$.

By Vii lana, it's enough to chan Ut S is closed archer $凶$ al Ans.
$\bigcup_{n}:$ If $R_{n} \in \rho$ and $R:=(\underset{n}{ })_{n}$, the $h(y):=\mu^{\mu}\left(R^{y}\right)=\mu^{\mu}\left(\forall R_{n}^{g}\right)=$ $=\lim _{n} \mu\left(R_{n}^{n}\right)=\operatorname{lin}_{n} h_{n}(g)$, so $h=\operatorname{lin}_{n} h_{n}$ here is N-acasarable benne "each ha is. (*) for R follows from MCT.
d: If $R_{n} \in S$, $R:=\mathbb{A}_{u} R_{n}$, then $h(\zeta)=\mu\left(R^{y}\right)=\mu\left(R_{n} R_{u}^{y}\right)$ $=\left(h_{y}\right.$ fivitiven of $\left.\mu\right)=\lim _{i n} \mu\left(R_{n}{ }^{\prime}\right)$, so $h=\operatorname{lin} h a \operatorname{N}$-masurachb. ($\$$) holds by the DCT," by the finiteom of v.
$F_{0 c} \sigma$-finite μ, ν, let $X=\left(\bigcup_{n} X_{n}\right.$, wee $X_{n} \in M$ al $J\left(X_{n}\right)<\infty$, $Y_{n} \in \mathbb{N}$ al $\nu\left(Y_{n}\right)<\infty$. Ten $\left.\tilde{X} \times Y=\mathbb{Y}\right) X_{n} \times Y_{n}$ and given $R \in \mu \otimes N$, the statements hold for each $R_{n}:=R \cap\left(X_{n} \times Y_{n}\right)$, so they hold tor $R=\underset{\sim}{\bigoplus} R n$ upward monotonicity of measures and the MCT.

Call a collection $S \leq P(X)$ a monotone class if it is loped under $\underset{\sim}{\Psi}$ and $\underset{\sim}{\mathbb{N}}$).
Example. The set of boxes in \mathbb{R}^{d} is a monotone class, bat not a σ-algeb ca became it is not dosed under complements or ctbl (even finite) unions. However, the monotone doss generated by the finite unions of boxes is a σ-alyebra as the following lemma a sects.

Monotone Class kens. Let S he the monotone clan generated by an algebra A. Then $S=\langle A\rangle_{\sigma}$.
Prot. It is enough to prove nt S is an algebra because then every $\left(t b l\right.$ union $\left.\bigcup_{u} B_{n}=\underset{u}{\mathbb{H}}\right)\left(\underset{i<u_{-}}{\cup} B_{i}\right)$.
Closedars uncle r complonent. Let $\varphi:=\left\{B \in S: B^{c} \in S\right\}$. C of aced

Closedness under finite unions. For each $B \in S$, let

$$
\varphi(B):=\{C \in S: B \cup C \in S\} .
$$

his is a monotone class: $B \cup\left(\underset{\sim}{\mathbb{Q}} C_{n}\right)=\underset{n}{(\uparrow)}\left(B \cup C_{n}\right)$ ad $B \cup\left(\mathbb{C}_{n} C_{n}\right)=\prod_{n}\left(B \cup C_{n}\right)$.
If $A \in A$, the. $C(A) \geq A$. Hence $e(A)=S$. Thus, for each $B \in S$, $C(B) \geq A$, so $e(B)$ is the monotone clan yeuerated by A, ie. $e(B)=S$. Therefore, for all $B, C \in S$, the union $B \cup C$ is also in S.

Fubini-Tonelli Theorem, ht (X, M, y) and (Y, N, v) be r-finite measure spaces and let $f: X \times Y \rightarrow \bar{R}:=[-\infty, \infty]$ be an $\mathscr{M} \otimes N$-measurable function.
(a) Tonelli. If +20 , then the fucclions $g: x \mapsto \int f_{x} d v$ and $k: y \mapsto \int f^{y} d^{\mu}$ are respectively M and IN measurable and

$$
\begin{equation*}
\iint f(x, s) d v(y) d \mu^{\mu}(x)=\int f d \mu^{\mu} x v=\iint f(x, y) d \mu(x) d v(y) . \tag{*}
\end{equation*}
$$

(b) Fubini. If f is $\gamma \times v$-integrable, then the functions g and $h(a s$ above) are μ and ν inheyable and (k) holds.

Proof. (a) This holds simple by linearity al Fabini-Tomedli for sets. For arbitrary $\mathcal{M} \otimes \mathbb{N}$-measurable $f \geqslant 0$, write f as an inresicicy limit of simple functions (Sn) and apply the tact that limits of measurable functions are vecsurable and M CT for (*).
(b) Pact (a) also show ht it $f \geqslant 0$ is also integrable, then $g(x) \perp h(y)$ we find for $\mu-a . e . x \in X$ v-a.e. $y \in Y$, by (*) applied to f. Now for any $f \in L^{\prime}(X \times Y, d \cup N)^{\prime}$, $f=f^{+}-f^{-}$, anal pact (al holds for f^{+}, f^{-}, so linearity gives the desired corrasion for f.

Remark. All conditions in this theorem are necessary; examples will be given in HW.
Remade. Usually, one first applies Tonelli to If to show the f is integrable, and afterwards apply Fubini do f.

